This is the multi-page printable view of this section. Click here to print.

Return to the regular view of this page.

Config Templates

Use Pigsty’s built-in Patroni config templates or customize your own

Pigsty provides four preset Patroni/PostgreSQL config templates optimized for different workloads:

TemplateCPU CoresUse CaseCharacteristics
oltp.yml4-128COLTP transactionsHigh concurrency, low latency
olap.yml4-128COLAP analyticsLarge queries, high parallelism
crit.yml4-128CCritical/FinanceData safety, audit, zero-loss
tiny.yml1-3CTiny instancesResource-constrained envs

Use pg_conf to select a template; default is oltp.yml.

The database tuning template pg_conf should be paired with the OS tuning template node_tune.


Usage

Set pg_conf in your cluster definition. It’s recommended to set node_tune accordingly for OS-level tuning:

pg-test:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
  vars:
    pg_cluster: pg-test
    pg_conf: oltp.yml    # PostgreSQL config template (default)
    node_tune: oltp      # OS tuning template (default)

For critical financial workloads, use crit.yml:

pg-finance:
  hosts:
    10.10.10.21: { pg_seq: 1, pg_role: primary }
    10.10.10.22: { pg_seq: 2, pg_role: replica }
    10.10.10.23: { pg_seq: 3, pg_role: replica }
  vars:
    pg_cluster: pg-finance
    pg_conf: crit.yml    # PostgreSQL critical template
    node_tune: crit      # OS critical tuning

For low-spec VMs or dev environments, use tiny.yml:

pg-dev:
  hosts:
    10.10.10.31: { pg_seq: 1, pg_role: primary }
  vars:
    pg_cluster: pg-dev
    pg_conf: tiny.yml    # PostgreSQL tiny template
    node_tune: tiny      # OS tiny tuning

Comparison

The four templates differ significantly in key parameters:

Connections & Memory

ParameterOLTPOLAPCRITTINY
max_connections500/1000500500/1000250
work_mem range64MB-1GB64MB-8GB64MB-1GB16MB-256MB
maintenance_work_mem25% shmem50% shmem25% shmem25% shmem
max_locks_per_transaction1-2x maxconn2-4x maxconn1-2x maxconn1-2x maxconn

Parallel Query

ParameterOLTPOLAPCRITTINY
max_worker_processescpu+8cpu+12cpu+8cpu+4
max_parallel_workers50% cpu80% cpu50% cpu50% cpu
max_parallel_workers_per_gather20% cpu (max 8)50% cpu0 (off)0 (off)
parallel_setup_cost2000100020001000
parallel_tuple_cost0.20.10.20.1

Sync Replication

ParameterOLTPOLAPCRITTINY
synchronous_modedepends pg_rpodepends pg_rpoforced ondepends pg_rpo
data_checksumsoptionaloptionalforced onoptional

Vacuum Config

ParameterOLTPOLAPCRITTINY
vacuum_cost_delay20ms10ms20ms20ms
vacuum_cost_limit20001000020002000
autovacuum_max_workers3332

Timeout & Security

ParameterOLTPOLAPCRITTINY
idle_in_transaction_session_timeout10minoff1min10min
log_min_duration_statement100ms1000ms100ms100ms
default_statistics_target4001000400200
track_activity_query_size8KB8KB32KB8KB
log_connectionsauthauthfulldefault

IO Config (PG17+)

ParameterOLTPOLAPCRITTINY
io_workers25% cpu (4-16)50% cpu (4-32)25% cpu (4-8)3
temp_file_limit1/20 disk1/5 disk1/20 disk1/20 disk

Selection Guide

  • OLTP Template: Default choice for most transaction processing. Ideal for e-commerce, social, gaming apps.

  • OLAP Template: For data warehouses, BI reports, ETL. Allows large queries, high parallelism, relaxed timeouts.

  • CRIT Template: For financial transactions, core accounting with strict consistency/security requirements. Forced sync replication, checksums, full audit.

  • TINY Template: For dev/test environments, resource-constrained VMs, Raspberry Pi. Minimizes resource usage, disables parallel queries.


Custom Templates

Create custom templates based on existing ones. Templates are in roles/pgsql/templates/:

roles/pgsql/templates/
├── oltp.yml    # OLTP template (default)
├── olap.yml    # OLAP template
├── crit.yml    # CRIT critical template
└── tiny.yml    # TINY micro template

Steps to create a custom template:

  1. Copy an existing template as base
  2. Modify parameters as needed
  3. Place in roles/pgsql/templates/
  4. Reference via pg_conf

Example:

cp roles/pgsql/templates/oltp.yml roles/pgsql/templates/myapp.yml
# Edit myapp.yml as needed

Then use in your cluster:

pg-myapp:
  vars:
    pg_conf: myapp.yml

Templates use Jinja2 syntax; parameters are dynamically computed based on node resources (CPU, memory, disk).


Tuning Strategy

For technical details on template parameter optimization, see Tuning Strategy:

  • Memory tuning (shared buffers, work mem, max connections)
  • CPU tuning (parallel query worker config)
  • Storage tuning (WAL size, temp file limits)
  • Manual parameter adjustment

1 - 默认配置模板的参数优化策略说明

了解在 Pigsty 中,预置的四种 Patroni 场景化模板所采用的不同参数优化策略

Pigsty 默认提供了四套场景化参数模板,可以通过 pg_conf 参数指定并使用。

  • tiny.yml:为小节点、虚拟机、小型演示优化(1-8核,1-16GB)
  • oltp.yml:为OLTP工作负载和延迟敏感应用优化(4C8GB+)(默认模板)
  • olap.yml:为OLAP工作负载和吞吐量优化(4C8G+)
  • crit.yml:为数据一致性和关键应用优化(4C8G+)

Pigsty 会针对这四种默认场景,采取不同的参数优化策略,如下所示:


内存参数调整

Pigsty 默认会检测系统的内存大小,并以此为依据设定最大连接数量与内存相关参数。

默认情况下,Pigsty 使用 25% 的内存作为 PostgreSQL 共享缓冲区,剩余的 75% 作为操作系统缓存。

默认情况下,如果用户没有设置一个 pg_max_conn 最大连接数,Pigsty 会根据以下规则使用默认值:

  • oltp: 500 (pgbouncer) / 1000 (postgres)
  • crit: 500 (pgbouncer) / 1000 (postgres)
  • tiny: 300
  • olap: 300

其中对于 OLTP 与 CRIT 模版来说,如果服务没有指向 pgbouncer 连接池,而是直接连接 postgres 数据库,最大连接会翻倍至 1000 条。

决定最大连接数后,work_mem 会根据共享内存数量 / 最大连接数计算得到,并限定在 64MB ~ 1GB 的范围内。

{% raw %}
{% if pg_max_conn != 'auto' and pg_max_conn|int >= 20 %}{% set pg_max_connections = pg_max_conn|int %}{% else %}{% if pg_default_service_dest|default('postgres') == 'pgbouncer' %}{% set pg_max_connections = 500 %}{% else %}{% set pg_max_connections = 1000 %}{% endif %}{% endif %}
{% set pg_max_prepared_transactions = pg_max_connections if 'citus' in pg_libs else 0 %}
{% set pg_max_locks_per_transaction = (2 * pg_max_connections)|int if 'citus' in pg_libs or 'timescaledb' in pg_libs else pg_max_connections %}
{% set pg_shared_buffers = (node_mem_mb|int * pg_shared_buffer_ratio|float) | round(0, 'ceil') | int %}
{% set pg_maintenance_mem = (pg_shared_buffers|int * 0.25)|round(0, 'ceil')|int %}
{% set pg_effective_cache_size = node_mem_mb|int - pg_shared_buffers|int  %}
{% set pg_workmem =  ([ ([ (pg_shared_buffers / pg_max_connections)|round(0,'floor')|int , 64 ])|max|int , 1024])|min|int %}
{% endraw %}

CPU参数调整

在 PostgreSQL 中,有 4 个与并行查询相关的重要参数,Pigsty 会自动根据当前系统的 CPU 核数进行参数优化。 在所有策略中,总并行进程数量(总预算)通常设置为 CPU 核数 + 8,且保底为 16 个,从而为逻辑复制与扩展预留足够的后台 worker 数量,OLAP 和 TINY 模板根据场景略有不同。

OLTP设置逻辑范围限制
max_worker_processesmax(100% CPU + 8, 16)核数 + 4,保底 1,
max_parallel_workersmax(ceil(50% CPU), 2)1/2 CPU 上取整,最少两个
max_parallel_maintenance_workersmax(ceil(33% CPU), 2)1/3 CPU 上取整,最少两个
max_parallel_workers_per_gathermin(max(ceil(20% CPU), 2),8)1/5 CPU 下取整,最少两个,最多 8 个
OLAP设置逻辑范围限制
max_worker_processesmax(100% CPU + 12, 20)核数 + 12,保底 20
max_parallel_workersmax(ceil(80% CPU, 2))4/5 CPU 上取整,最少两个
max_parallel_maintenance_workersmax(ceil(33% CPU), 2)1/3 CPU 上取整,最少两个
max_parallel_workers_per_gathermax(floor(50% CPU), 2)1/2 CPU 上取整,最少两个
CRIT设置逻辑范围限制
max_worker_processesmax(100% CPU + 8, 16)核数 + 8,保底 16
max_parallel_workersmax(ceil(50% CPU), 2)1/2 CPU 上取整,最少两个
max_parallel_maintenance_workersmax(ceil(33% CPU), 2)1/3 CPU 上取整,最少两个
max_parallel_workers_per_gather0, 按需启用
TINY设置逻辑范围限制
max_worker_processesmax(100% CPU + 4, 12)核数 + 4,保底 12
max_parallel_workersmax(ceil(50% CPU) 1)50% CPU 下取整,最少1个
max_parallel_maintenance_workersmax(ceil(33% CPU), 1)33% CPU 下取整,最少1个
max_parallel_workers_per_gather`0, 按需启用

请注意,CRIT 和 TINY 模板直接通过设置 max_parallel_workers_per_gather = 0 关闭了并行查询。 用户可以按需在需要时设置此参数以启用并行查询。

OLTP 和 CRIT 模板都额外设置了以下参数,将并行查询的 Cost x 2,以降低使用并行查询的倾向。

parallel_setup_cost: 2000           # double from 100 to increase parallel cost
parallel_tuple_cost: 0.2            # double from 0.1 to increase parallel cost
min_parallel_table_scan_size: 16MB  # double from 8MB to increase parallel cost
min_parallel_index_scan_size: 1024  # double from 512 to increase parallel cost

请注意 max_worker_processes 参数的调整必须在重启后才能生效。此外,当从库的本参数配置值高于主库时,从库将无法启动。 此参数必须通过 patroni 配置管理进行调整,该参数由 Patroni 管理,用于确保主从配置一致,避免在故障切换时新从库无法启动。


存储空间参数

Pigsty 默认检测 /data/postgres 主数据目录所在磁盘的总空间,并以此作为依据指定下列参数:

{% raw %}
min_wal_size: {{ ([pg_size_twentieth, 200])|min }}GB                  # 1/20 disk size, max 200GB
max_wal_size: {{ ([pg_size_twentieth * 4, 2000])|min }}GB             # 2/10 disk size, max 2000GB
max_slot_wal_keep_size: {{ ([pg_size_twentieth * 6, 3000])|min }}GB   # 3/10 disk size, max 3000GB
temp_file_limit: {{ ([pg_size_twentieth, 200])|min }}GB               # 1/20 of disk size, max 200GB
{% endraw %}
  • temp_file_limit 默认为磁盘空间的 5%,封顶不超过 200GB。
  • min_wal_size 默认为磁盘空间的 5%,封顶不超过 200GB。
  • max_wal_size 默认为磁盘空间的 20%,封顶不超过 2TB。
  • max_slot_wal_keep_size 默认为磁盘空间的 30%,封顶不超过 3TB。

作为特例, OLAP 模板允许 20% 的 temp_file_limit ,封顶不超过 2TB


手工调整参数

除了使用 Pigsty 自动配置的参数外,您还可以手工调整 PostgreSQL 参数。

使用 pg edit-config <cluster> 命令可以交互式编辑集群配置:

pg edit-config pg-meta

或者使用 -p 参数直接设置参数:

pg edit-config -p log_min_duration_statement=1000 pg-meta
pg edit-config --force -p shared_preload_libraries='timescaledb, pg_cron, pg_stat_statements, auto_explain' pg-meta

您也可以使用 Patroni REST API 来修改配置:

curl -u 'postgres:Patroni.API' \
    -d '{"postgresql":{"parameters": {"log_min_duration_statement":200}}}' \
    -s -X PATCH http://10.10.10.10:8008/config | jq .

2 - OLTP Template

PostgreSQL config template optimized for online transaction processing workloads

oltp.yml is Pigsty’s default config template, optimized for online transaction processing (OLTP). Designed for 4-128 core CPUs with high concurrency, low latency, and high throughput.

Pair with node_tune = oltp for OS-level tuning.


Use Cases

OLTP template is ideal for:

  • E-commerce: Order processing, inventory, user transactions
  • Social apps: User feeds, messaging, following relationships
  • Gaming backends: Player data, leaderboards, game state
  • SaaS applications: Multi-tenant business systems
  • Web apps: CRUD-intensive workloads

Workload characteristics:

  • Many short transactions (millisecond-level)
  • High concurrent connections (hundreds to thousands)
  • Read/write ratio typically 7:3 to 9:1
  • Latency-sensitive, requires fast response
  • High data consistency requirements

Usage

oltp.yml is the default template, no explicit specification needed:

pg-oltp:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
  vars:
    pg_cluster: pg-oltp
    # pg_conf: oltp.yml  # PostgreSQL config template (default)
    # node_tune: oltp    # OS tuning template (default)

Or explicitly specify:

pg-oltp:
  vars:
    pg_conf: oltp.yml    # PostgreSQL config template
    node_tune: oltp      # OS tuning template

Parameter Details

Connection Management

max_connections: 500/1000   # depends on pgbouncer usage
superuser_reserved_connections: 10
  • When pg_default_service_dest is pgbouncer, max_connections is set to 500
  • When traffic connects directly to PostgreSQL, max_connections is set to 1000
  • Override via pg_max_conn parameter

Memory Config

OLTP template memory allocation strategy:

ParameterFormulaDescription
shared_buffersmem × pg_shared_buffer_ratioDefault ratio 0.25
maintenance_work_memshared_buffers × 25%For VACUUM, CREATE INDEX
work_mem64MB - 1GBBased on shared_buffers/max_connections
effective_cache_sizetotal mem - shared_buffersEstimated cache memory

work_mem calculation:

work_mem = min(max(shared_buffers / max_connections, 64MB), 1GB)

Ensures each connection has sufficient sort/hash memory without over-allocation.

Parallel Query

OLTP template moderately limits parallel queries to prevent resource contention:

max_worker_processes: cpu + 8 (min 16)
max_parallel_workers: 50% × cpu (min 2)
max_parallel_workers_per_gather: 20% × cpu (2-8)
max_parallel_maintenance_workers: 33% × cpu (min 2)

Parallel cost estimates are increased to favor serial execution:

parallel_setup_cost: 2000      # 2x default (1000)
parallel_tuple_cost: 0.2       # 2x default (0.1)
min_parallel_table_scan_size: 16MB   # 2x default (8MB)
min_parallel_index_scan_size: 1024   # 2x default (512)

WAL Config

min_wal_size: disk/20 (max 200GB)
max_wal_size: disk/5 (max 2000GB)
max_slot_wal_keep_size: disk×3/10 (max 3000GB)
wal_buffers: 16MB
wal_writer_delay: 20ms
wal_writer_flush_after: 1MB
commit_delay: 20
commit_siblings: 10
checkpoint_timeout: 15min
checkpoint_completion_target: 0.80

Balances data safety and write performance.

Vacuum Config

vacuum_cost_delay: 20ms         # sleep after each vacuum round
vacuum_cost_limit: 2000         # cost limit per vacuum round
autovacuum_max_workers: 3
autovacuum_naptime: 1min
autovacuum_vacuum_scale_factor: 0.08    # 8% table change triggers vacuum
autovacuum_analyze_scale_factor: 0.04   # 4% table change triggers analyze
autovacuum_freeze_max_age: 1000000000

Conservative vacuum settings avoid impacting online transaction performance.

Query Optimization

random_page_cost: 1.1           # SSD optimized
effective_io_concurrency: 200   # SSD concurrent IO
default_statistics_target: 400  # Statistics precision

Enables planner to generate better query plans.

Logging & Monitoring

log_min_duration_statement: 100         # log queries > 100ms
log_statement: ddl                      # log DDL statements
log_checkpoints: on
log_lock_waits: on
log_temp_files: 1024                    # log temp files > 1MB
log_autovacuum_min_duration: 1s
track_io_timing: on
track_functions: all
track_activity_query_size: 8192

Client Timeouts

deadlock_timeout: 50ms
idle_in_transaction_session_timeout: 10min

10-minute idle transaction timeout prevents zombie transactions holding locks.

Extension Config

shared_preload_libraries: 'pg_stat_statements, auto_explain'

# auto_explain
auto_explain.log_min_duration: 1s
auto_explain.log_analyze: on
auto_explain.log_verbose: on
auto_explain.log_timing: on
auto_explain.log_nested_statements: true

# pg_stat_statements
pg_stat_statements.max: 10000
pg_stat_statements.track: all
pg_stat_statements.track_utility: off
pg_stat_statements.track_planning: off

Template Comparison

FeatureOLTPOLAPCRIT
max_connections500-1000500500-1000
work_mem64MB-1GB64MB-8GB64MB-1GB
Parallel queryModerate limitAggressiveDisabled
Vacuum intensityConservativeAggressiveConservative
Txn timeout10minDisabled1min
Slow query threshold100ms1000ms100ms

Why OLTP over OLAP?

  • Queries are mostly simple point/range lookups
  • Transaction response time requires milliseconds
  • High concurrent connections
  • No complex analytical queries

Why OLTP over CRIT?

  • Small probability of data loss acceptable (async replication)
  • Complete audit logs not required
  • Better write performance desired

Performance Tuning Tips

Connection Pooling

For high concurrency, use PgBouncer connection pool:

pg-oltp:
  vars:
    pg_default_service_dest: pgbouncer  # default
    pgbouncer_poolmode: transaction     # transaction-level pooling

Read Separation

Use read replicas to share read load:

pg-oltp:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
    10.10.10.13: { pg_seq: 3, pg_role: replica }

Monitoring Metrics

Focus on these metrics:

  • Connections: Active/waiting connection counts
  • Transaction rate: TPS, commit/rollback ratio
  • Response time: Query latency percentiles (p50/p95/p99)
  • Lock waits: Lock wait time, deadlock counts
  • Replication lag: Replica delay time and bytes

References

3 - OLAP Template

PostgreSQL config template optimized for online analytical processing workloads

olap.yml is optimized for online analytical processing (OLAP). Designed for 4-128 core CPUs with support for large queries, high parallelism, relaxed timeouts, and aggressive vacuum.

Pair with node_tune = olap for OS-level tuning.


Use Cases

OLAP template is ideal for:

  • Data warehouses: Historical data storage, multidimensional analysis
  • BI reports: Complex report queries, dashboard data sources
  • ETL processing: Data extraction, transformation, loading
  • Data analysis: Ad-hoc queries, data exploration
  • HTAP mixed workloads: Analytical replicas

Workload characteristics:

  • Complex queries (seconds to minutes)
  • Low concurrent connections (tens to hundreds)
  • Read-intensive, writes typically batch operations
  • Throughput-sensitive, tolerates higher latency
  • Scans large data volumes

Usage

Specify pg_conf = olap.yml in cluster definition:

pg-olap:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
  vars:
    pg_cluster: pg-olap
    pg_conf: olap.yml    # PostgreSQL analytics template
    node_tune: olap      # OS analytics tuning

Use olap.yml template for dedicated offline replicas:

pg-mixed:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
    10.10.10.13: { pg_seq: 3, pg_role: offline, pg_conf: olap.yml }  # offline analytics replica
  vars:
    pg_cluster: pg-mixed
    pg_conf: oltp.yml    # primary and online replicas use OLTP
    node_tune: oltp      # OS OLTP tuning

Parameter Details

Connection Management

max_connections: 500
superuser_reserved_connections: 10

OLAP scenarios typically don’t need many connections; 500 is sufficient for most analytical workloads.

Memory Config

OLAP template uses more aggressive memory allocation:

ParameterFormulaDescription
shared_buffersmem × pg_shared_buffer_ratioDefault ratio 0.25
maintenance_work_memshared_buffers × 50%Faster index creation and VACUUM
work_mem64MB - 8GBLarger sort/hash memory
effective_cache_sizetotal mem - shared_buffersEstimated cache memory

work_mem calculation (differs from OLTP):

work_mem = min(max(shared_buffers / max_connections, 64MB), 8GB)

Larger work_mem allows bigger sort and hash operations in memory, avoiding disk spill.

Locks & Transactions

max_locks_per_transaction: 2-4x maxconn   # OLTP: 1-2x

OLAP queries may involve more tables (partitions, many JOINs), requiring more lock slots.

Parallel Query

OLAP template aggressively enables parallel queries:

max_worker_processes: cpu + 12 (min 20)      # OLTP: cpu + 8
max_parallel_workers: 80% × cpu (min 2)      # OLTP: 50%
max_parallel_workers_per_gather: 50% × cpu   # OLTP: 20% (max 8)
max_parallel_maintenance_workers: 33% × cpu

Parallel cost estimates use defaults to favor parallel plans:

# parallel_setup_cost: 1000    # default, not doubled
# parallel_tuple_cost: 0.1     # default, not doubled

Partition-wise optimization enabled:

enable_partitionwise_join: on       # smart partition JOIN
enable_partitionwise_aggregate: on  # smart partition aggregation

IO Config (PG17+)

io_workers: 50% × cpu (4-32)    # OLTP: 25% (4-16)

More IO workers support parallel large table scans.

WAL Config

min_wal_size: disk/20 (max 200GB)
max_wal_size: disk/5 (max 2000GB)
max_slot_wal_keep_size: disk×3/10 (max 3000GB)
temp_file_limit: disk/5 (max 2000GB)   # OLTP: disk/20

Larger temp_file_limit allows bigger intermediate results to spill to disk.

Vacuum Config

OLAP template uses aggressive vacuum settings:

vacuum_cost_delay: 10ms         # OLTP: 20ms, faster vacuum
vacuum_cost_limit: 10000        # OLTP: 2000, more work per round
autovacuum_max_workers: 3
autovacuum_naptime: 1min
autovacuum_vacuum_scale_factor: 0.08
autovacuum_analyze_scale_factor: 0.04

Analytical databases often have bulk writes requiring aggressive vacuum to reclaim space.

Query Optimization

random_page_cost: 1.1
effective_io_concurrency: 200
default_statistics_target: 1000    # OLTP: 400, more precise stats

Higher default_statistics_target provides more accurate query plans, crucial for complex analytics.

Logging & Monitoring

log_min_duration_statement: 1000    # OLTP: 100ms, relaxed threshold
log_statement: ddl
log_checkpoints: on
log_lock_waits: on
log_temp_files: 1024
log_autovacuum_min_duration: 1s
track_io_timing: on
track_cost_delay_timing: on         # PG18+, track vacuum cost delay
track_functions: all
track_activity_query_size: 8192

Client Timeouts

deadlock_timeout: 50ms
idle_in_transaction_session_timeout: 0   # OLTP: 10min, disabled

Analytical queries may need to hold transactions for extended periods, so idle timeout is disabled.


Key Differences from OLTP

ParameterOLAPOLTPReason
max_connections500500-1000Fewer analytical connections
work_mem limit8GB1GBSupport larger in-memory sorts
maintenance_work_mem50% buffer25% bufferFaster index creation
max_locks_per_transaction2-4x1-2xMore tables in queries
max_parallel_workers80% cpu50% cpuAggressive parallelism
max_parallel_workers_per_gather50% cpu20% cpuAggressive parallelism
parallel_setup_cost10002000Default, encourages parallel
parallel_tuple_cost0.10.2Default, encourages parallel
enable_partitionwise_joinonoffPartition optimization
enable_partitionwise_aggregateonoffPartition optimization
vacuum_cost_delay10ms20msAggressive vacuum
vacuum_cost_limit100002000Aggressive vacuum
temp_file_limit1/5 disk1/20 diskAllow larger temp files
io_workers50% cpu25% cpuMore parallel IO
log_min_duration_statement1000ms100msRelaxed slow query threshold
default_statistics_target1000400More precise stats
idle_in_transaction_session_timeoutDisabled10minAllow long transactions

Performance Tuning Tips

With TimescaleDB

OLAP template works great with TimescaleDB:

pg-timeseries:
  vars:
    pg_conf: olap.yml
    pg_libs: 'timescaledb, pg_stat_statements, auto_explain'
    pg_extensions:
      - timescaledb

With pg_duckdb

For ultimate analytical performance, combine with pg_duckdb:

pg-analytics:
  vars:
    pg_conf: olap.yml
    pg_libs: 'pg_duckdb, pg_stat_statements, auto_explain'

Columnar Storage

Consider columnar storage extensions:

pg_extensions:
  - citus_columnar  # or pg_mooncake

Resource Isolation

For mixed workloads, isolate analytics to dedicated replicas:

pg-mixed:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }               # OLTP writes
    10.10.10.12: { pg_seq: 2, pg_role: replica }               # OLTP reads
    10.10.10.13: { pg_seq: 3, pg_role: offline }               # OLAP analytics
  vars:
    pg_cluster: pg-mixed

Monitoring Metrics

Focus on these metrics:

  • Query time: Long query execution time distribution
  • Parallelism: Parallel worker utilization
  • Temp files: Temp file size and count
  • Disk IO: Sequential and index scan IO volume
  • Cache hit ratio: shared_buffers and OS cache hit rates

References

4 - CRIT Template

PostgreSQL config template optimized for critical/financial workloads with data safety and audit compliance

crit.yml is optimized for critical/financial workloads. Designed for 4-128 core CPUs with forced sync replication, data checksums, full audit logging, and strict security. Trades performance for maximum data safety.

Pair with node_tune = crit for OS-level tuning, optimizing dirty page management.


Use Cases

CRIT template is ideal for:

  • Financial transactions: Bank transfers, payment settlement, securities trading
  • Core accounting: General ledger systems, accounting systems
  • Compliance audit: Businesses requiring complete operation records
  • Critical business: Any scenario that cannot tolerate data loss

Requirements:

  • Zero data loss (RPO = 0)
  • Data integrity verification
  • Complete audit logs
  • Strict security policies
  • Acceptable performance trade-offs

Usage

Specify pg_conf = crit.yml in cluster definition:

pg-finance:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
    10.10.10.13: { pg_seq: 3, pg_role: replica }
  vars:
    pg_cluster: pg-finance
    pg_conf: crit.yml    # PostgreSQL critical template
    node_tune: crit      # OS critical tuning

Recommendation: Critical clusters should have at least 3 nodes to maintain sync replication when one node fails.


Core Features

Forced Sync Replication

CRIT template forces sync replication regardless of pg_rpo setting:

synchronous_mode: true   # forced on, ignores pg_rpo

Every transaction commit waits for at least one replica confirmation, ensuring RPO = 0 (zero data loss).

Cost: Write latency increases (typically 1-5ms depending on network).

Forced Data Checksums

CRIT template forces data checksums regardless of pg_checksum setting:

initdb:
  - data-checksums   # forced on, ignores pg_checksum

Data checksums detect silent disk corruption (bit rot), critical for financial data.

Disabled Parallel Query

CRIT template disables parallel query gather operations:

max_parallel_workers_per_gather: 0   # parallel queries disabled

Parallel cost estimates are also increased:

parallel_setup_cost: 2000
parallel_tuple_cost: 0.2
min_parallel_table_scan_size: 16MB
min_parallel_index_scan_size: 1024

Reason: Parallel queries may cause unstable latency. For latency-sensitive financial transactions, predictable stable performance is more important.


Parameter Details

Connection Management

max_connections: 500/1000   # depends on pgbouncer usage
superuser_reserved_connections: 10

Same as OLTP template.

Memory Config

ParameterFormulaDescription
shared_buffersmem × pg_shared_buffer_ratioDefault ratio 0.25
maintenance_work_memshared_buffers × 25%For VACUUM, CREATE INDEX
work_mem64MB - 1GBSame as OLTP
effective_cache_sizetotal mem - shared_buffersEstimated cache memory

WAL Config (Key Differences)

wal_writer_delay: 10ms              # OLTP: 20ms, more frequent flush
wal_writer_flush_after: 0           # OLTP: 1MB, immediate flush, no buffer
idle_replication_slot_timeout: 3d   # OLTP: 7d, stricter slot cleanup

wal_writer_flush_after: 0 ensures every WAL write flushes to disk immediately, minimizing data loss risk.

Replication Config (PG15-)

vacuum_defer_cleanup_age: 500000    # PG15 and below only

Preserves 500K recent transactions from vacuum cleanup, providing more catchup buffer for replicas.

Audit Logging (Key Differences)

CRIT template enables full connection audit:

PostgreSQL 18+:

log_connections: 'receipt,authentication,authorization'

PostgreSQL 17 and below:

log_connections: 'on'
log_disconnections: 'on'

Records complete connection lifecycle:

  • Connection receipt
  • Authentication process
  • Authorization result
  • Disconnection

Query Logging

log_min_duration_statement: 100     # log queries > 100ms
log_statement: ddl                  # log all DDL
track_activity_query_size: 32768    # OLTP: 8192, capture full queries

32KB track_activity_query_size ensures capturing complete long query text.

Statistics Tracking

track_io_timing: on
track_cost_delay_timing: on         # PG18+, track vacuum cost delay
track_functions: all
track_activity_query_size: 32768

Client Timeouts (Key Differences)

idle_in_transaction_session_timeout: 1min   # OLTP: 10min, stricter

1-minute idle transaction timeout quickly releases zombie transactions holding locks.

Extension Config

shared_preload_libraries: '$libdir/passwordcheck, pg_stat_statements, auto_explain'

Note: CRIT template loads passwordcheck by default, enforcing password complexity.


Key Differences from OLTP

ParameterCRITOLTPReason
synchronous_modeForced trueDepends on pg_rpoZero data loss
data-checksumsForced onOptionalData integrity
max_parallel_workers_per_gather020% cpuStable latency
wal_writer_delay10ms20msMore frequent flush
wal_writer_flush_after01MBImmediate flush
idle_replication_slot_timeout3d7dStricter cleanup
idle_in_transaction_session_timeout1min10minQuick lock release
track_activity_query_size32KB8KBComplete query capture
log_connectionsFull loggingAuth onlyAudit compliance
log_disconnectionsonoffAudit compliance
passwordcheckEnabledNot enabledPassword security
vacuum_defer_cleanup_age5000000Replica catchup buffer

Performance Impact

Using CRIT template has these impacts:

Increased Write Latency

Sync replication adds 1-5ms write latency (network-dependent):

Async replication: commit -> local flush -> return to client
Sync replication:  commit -> local flush -> wait replica confirm -> return to client

Reduced Write Throughput

Due to replica confirmation wait, write TPS may drop 10-30%.

More Stable Query Latency

With parallel queries disabled, query latency is more predictable without parallel startup overhead variance.

Slightly Increased Resource Overhead

More frequent WAL flushes and complete audit logs add extra IO overhead.


HA Configuration

pg-critical:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
    10.10.10.12: { pg_seq: 2, pg_role: replica }
    10.10.10.13: { pg_seq: 3, pg_role: replica }
  vars:
    pg_cluster: pg-critical
    pg_conf: crit.yml    # PostgreSQL critical template
    node_tune: crit      # OS critical tuning

3-node setup ensures sync replication continues when one node fails.

Cross-DC Deployment

For financial-grade disaster recovery:

pg-critical:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary, pg_weight: 100 }  # DC A
    10.10.10.12: { pg_seq: 2, pg_role: replica, pg_weight: 100 }  # DC A
    10.20.10.13: { pg_seq: 3, pg_role: replica, pg_weight: 0 }    # DC B (standby)
  vars:
    pg_cluster: pg-critical
    pg_conf: crit.yml    # PostgreSQL critical template
    node_tune: crit      # OS critical tuning

Quorum Commit

For higher consistency, configure multiple sync replicas:

$ pg edit-config pg-critical
synchronous_mode: true
synchronous_node_count: 2    # require 2 replica confirmations

Security Hardening Tips

Password Policy

CRIT template has passwordcheck enabled; further configure:

-- Set password encryption
ALTER SYSTEM SET password_encryption = 'scram-sha-256';

Audit Extension

Consider pgaudit for detailed auditing:

pg_libs: 'pg_stat_statements, auto_explain, pgaudit'
pg_parameters:
  pgaudit.log: 'ddl, role, write'

Network Isolation

Ensure database network is isolated; use HBA rules to restrict access.


Monitoring Metrics

For critical clusters, focus on:

  • Replication lag: Sync lag should be near zero
  • Transaction commit time: p99 latency
  • Lock waits: Long lock waits may impact business
  • Checkpoints: Checkpoint duration and frequency
  • WAL generation rate: Predict disk space needs

References

5 - TINY Template

PostgreSQL config template optimized for micro instances and resource-constrained environments

tiny.yml is optimized for micro instances and resource-constrained environments. Designed for 1-3 core CPUs with minimal resource usage, conservative memory allocation, and disabled parallel queries.

Pair with node_tune = tiny for OS-level tuning.


Use Cases

TINY template is ideal for:

  • Dev/test: Local development, CI/CD testing
  • Low-spec VMs: 1-2 core CPU, 1-4GB RAM cloud instances
  • Edge computing: Raspberry Pi, embedded devices
  • Demos: Quick Pigsty experience
  • Personal projects: Resource-limited blogs, small apps

Resource constraints:

  • 1-3 CPU cores
  • 1-8 GB RAM
  • Limited disk space
  • May share resources with other services

Usage

Specify pg_conf = tiny.yml in cluster definition:

pg-dev:
  hosts:
    10.10.10.11: { pg_seq: 1, pg_role: primary }
  vars:
    pg_cluster: pg-dev
    pg_conf: tiny.yml    # PostgreSQL micro instance template
    node_tune: tiny      # OS micro instance tuning

Single-node development:

pg-local:
  hosts:
    127.0.0.1: { pg_seq: 1, pg_role: primary }
  vars:
    pg_cluster: pg-local
    pg_conf: tiny.yml    # PostgreSQL micro instance template
    node_tune: tiny      # OS micro instance tuning

Parameter Details

Connection Management

max_connections: 250   # OLTP: 500-1000, reduced connection overhead
superuser_reserved_connections: 10

Micro instances don’t need many concurrent connections; 250 is sufficient for dev/test.

Memory Config

TINY template uses conservative memory allocation:

ParameterFormulaDescription
shared_buffersmem × pg_shared_buffer_ratioDefault ratio 0.25
maintenance_work_memshared_buffers × 25%For VACUUM, CREATE INDEX
work_mem16MB - 256MBSmaller sort/hash memory
effective_cache_sizetotal mem - shared_buffersEstimated cache memory

work_mem calculation (differs from OLTP):

work_mem = min(max(shared_buffers / max_connections, 16MB), 256MB)

Smaller work_mem limit (256MB vs OLTP’s 1GB) prevents memory exhaustion.

Parallel Query (Fully Disabled)

TINY template completely disables parallel queries:

max_worker_processes: cpu + 4 (min 12)      # OLTP: cpu + 8
max_parallel_workers: 50% × cpu (min 1)      # OLTP: 50% (min 2)
max_parallel_workers_per_gather: 0           # parallel queries disabled
max_parallel_maintenance_workers: 33% × cpu (min 1)

max_parallel_workers_per_gather: 0 ensures queries won’t spawn parallel workers, avoiding resource contention on low-core systems.

IO Config (PG17+)

io_workers: 3   # fixed value, OLTP: 25% cpu (4-16)

Fixed low IO worker count suitable for resource-constrained environments.

Vacuum Config

vacuum_cost_delay: 20ms
vacuum_cost_limit: 2000
autovacuum_max_workers: 2          # OLTP: 3, one fewer worker
autovacuum_naptime: 1min
# autovacuum_vacuum_scale_factor uses default
# autovacuum_analyze_scale_factor uses default

Fewer autovacuum workers reduce background resource usage.

Query Optimization

random_page_cost: 1.1
effective_io_concurrency: 200
default_statistics_target: 200     # OLTP: 400, lower precision saves space

Lower default_statistics_target reduces pg_statistic table size.

Logging Config

log_min_duration_statement: 100    # same as OLTP
log_statement: ddl
log_checkpoints: on
log_lock_waits: on
log_temp_files: 1024
# log_connections uses default (no extra logging)

TINY template doesn’t enable extra connection logging to reduce log volume.

Client Timeouts

deadlock_timeout: 50ms
idle_in_transaction_session_timeout: 10min   # same as OLTP

Extension Config

shared_preload_libraries: 'pg_stat_statements, auto_explain'

pg_stat_statements.max: 2500      # OLTP: 10000, reduced memory usage
pg_stat_statements.track: all
pg_stat_statements.track_utility: off
pg_stat_statements.track_planning: off

pg_stat_statements.max reduced from 10000 to 2500, saving ~75% memory.


Key Differences from OLTP

ParameterTINYOLTPReason
max_connections250500-1000Reduce connection overhead
work_mem limit256MB1GBPrevent memory exhaustion
max_worker_processescpu+4cpu+8Fewer background processes
max_parallel_workers_per_gather020% cpuDisable parallel queries
autovacuum_max_workers23Reduce background load
default_statistics_target200400Save space
pg_stat_statements.max250010000Reduce memory usage
io_workers325% cpuFixed low value

Resource Estimates

TINY template resource usage by configuration:

1 Core 1GB RAM

shared_buffers: ~256MB
work_mem: ~16MB
maintenance_work_mem: ~64MB
max_connections: 250
max_worker_processes: ~12

PostgreSQL process memory: ~400-600MB

2 Core 4GB RAM

shared_buffers: ~1GB
work_mem: ~32MB
maintenance_work_mem: ~256MB
max_connections: 250
max_worker_processes: ~12

PostgreSQL process memory: ~1.5-2GB

4 Core 8GB RAM

Consider using OLTP template instead:

pg-small:
  vars:
    pg_conf: oltp.yml   # 4C8G can use OLTP template

Performance Tuning Tips

Further Resource Reduction

For extremely constrained resources:

pg_parameters:
  max_connections: 100           # further reduce
  shared_buffers: 128MB          # further reduce
  maintenance_work_mem: 32MB
  work_mem: 8MB

Disable Unnecessary Extensions

pg_libs: 'pg_stat_statements'    # keep only essential extensions

Disable Unnecessary Features

pg_parameters:
  track_io_timing: off           # disable IO timing tracking
  track_functions: none          # disable function tracking

Use External Connection Pool

Even on micro instances, PgBouncer significantly improves concurrency:

pg-tiny:
  vars:
    pg_conf: tiny.yml
    pg_default_service_dest: pgbouncer
    pgbouncer_poolmode: transaction

Cloud Platform Recommendations

AWS

  • t3.micro: 1 vCPU, 1GB RAM - suitable for TINY
  • t3.small: 2 vCPU, 2GB RAM - suitable for TINY
  • t3.medium: 2 vCPU, 4GB RAM - consider OLTP

Alibaba Cloud

  • ecs.t6-c1m1.small: 1 vCPU, 1GB RAM - suitable for TINY
  • ecs.t6-c1m2.small: 1 vCPU, 2GB RAM - suitable for TINY
  • ecs.t6-c1m4.small: 1 vCPU, 4GB RAM - suitable for TINY

Tencent Cloud

  • SA2.SMALL1: 1 vCPU, 1GB RAM - suitable for TINY
  • SA2.SMALL2: 1 vCPU, 2GB RAM - suitable for TINY
  • SA2.SMALL4: 1 vCPU, 4GB RAM - suitable for TINY

Edge Device Deployment

Raspberry Pi 4

pg-pi:
  hosts:
    192.168.1.100: { pg_seq: 1, pg_role: primary }
  vars:
    pg_cluster: pg-pi
    pg_conf: tiny.yml       # PostgreSQL micro instance template
    node_tune: tiny         # OS micro instance tuning
    pg_storage_type: SSD    # SSD storage recommended

Docker Container

pg-docker:
  hosts:
    172.17.0.2: { pg_seq: 1, pg_role: primary }
  vars:
    pg_cluster: pg-docker
    pg_conf: tiny.yml       # PostgreSQL micro instance template
    node_tune: tiny         # OS micro instance tuning

Upgrading to OLTP

When your application grows and needs more resources, easily upgrade to OLTP template:

  1. Upgrade VM specs (4 core 8GB+)
  2. Modify cluster config:
pg-growing:
  vars:
    pg_conf: oltp.yml    # change from tiny.yml to oltp.yml
    node_tune: oltp      # change from tiny to oltp
  1. Reconfigure cluster or redeploy

References